

## LNPTM THERMOCOMPTM COMPOUND LCOO4XXP

## LC-1004 NAT

## DESCRIPTION

LNP THERMOCOMP LC004XXP compound is based on Polyetheretherketone (PEEK) resin containing 20% carbon fiber. Added features of this grade include: Electrically Conductive.

| GENERAL INFORMATION   |                                                                                                                                 |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Features              | Electrically Conductive, Carbon fiber filled, High stiffness/Strength, High temperature resistance, No PFAS intentionally added |
| Fillers               | Carbon Fiber                                                                                                                    |
| Polymer Types         | Polyetheretherketone (PEEK)                                                                                                     |
| Processing Techniques | Injection Molding                                                                                                               |

| INDUSTRY                   | SUB INDUSTRY                                             |
|----------------------------|----------------------------------------------------------|
| Electrical and Electronics | Electronic Components, Mobile Phone - Computer - Tablets |
| Industrial                 | Electrical, Material Handling                            |

## TYPICAL PROPERTY VALUES

| PROPERTIES                           | TYPICAL VALUES  | UNITS   | TEST METHODS |
|--------------------------------------|-----------------|---------|--------------|
| MECHANICAL <sup>(1)</sup>            |                 |         |              |
| Tensile Stress, yield, 5 mm/min      | 199             | MPa     | ISO 527      |
| Tensile Strain, break, 5 mm/min      | 1.9             | %       | ISO 527      |
| Flexural Stress, yield, 2 mm/min     | 280             | MPa     | ISO 178      |
| Flexural Modulus, 2 mm/min           | 13900           | MPa     | ISO 178      |
| IMPACT <sup>(1)</sup>                |                 |         |              |
| Izod Impact, unnotched 80*10*4 +23°C | 45              | kJ/m²   | ISO 180/1U   |
| Izod Impact, notched 80*10*4 +23°C   | 10              | kJ / m² | ISO 180/1A   |
| PHYSICAL <sup>(1)</sup>              |                 |         |              |
| Mold Shrinkage, flow (2)             | 0.1 – 0.3       | %       | SABIC method |
| Density                              | 1.36            | g/cm³   | ISO 1183     |
| ELECTRICAL <sup>(1)</sup>            |                 |         |              |
| Surface Resistivity                  | 1.E+02 – 1.E+04 | Ω       | ASTM D257    |
| INJECTION MOLDING (3)                |                 |         |              |
| Drying Temperature                   | 120 – 150       | °C      |              |
| Drying Time                          | 4               | Hrs     |              |
| Maximum Moisture Content             | 0.1             | %       |              |
| Melt Temperature                     | 380 - 390       | °C      |              |
| Front - Zone 3 Temperature           | 380 – 395       | °C      |              |
| Middle - Zone 2 Temperature          | 365 – 375       | °C      |              |
| Rear - Zone 1 Temperature            | 350 - 360       | °C      |              |
| Mold Temperature                     | 140 – 165       | °C      |              |

© 2024 Copyright by SABIC. All rights reserved

CHEMISTRY THAT MATTERS



| PROPERTIES    | TYPICAL VALUES | UNITS | TEST METHODS |
|---------------|----------------|-------|--------------|
| Back Pressure | 0.3 – 0.7      | MPa   |              |
| Screw Speed   | 60 - 100       | rpm   |              |

(1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.

(2) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.

(3) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.